Talking About Carbon Dioxide – Here is a review of the CO2 expert lectures recently given at ATMOsphere Asia in Tokyo. Find out how the efficiency of a refrigeration system using this natural refrigerant can be considerably increased even in warm climates:
Parallel Compression increases COP significantly 
Oliver Javerschek, Bitzer, presented an empirical study of a CO2 booster system of the 3rd generation with parallel compression (PC) and flash gas bypass (FGB), and no heat reclaim. Bitzer’s study used the smallest available compressor for the parallel compressor, the 2MTE-7K.
An analysis of a parallel compression system in three different climates, Tokyo, Beijing and New Delhi presented by Javerschek showed that thanks to parallel compression an increase in COP of up to 14% is possible in higher ambient temperatures, and a maximum COP of up to 6 can be achieved. At the lower ambient temperatures the COP gradually decreases because of the reduced amount of flash gas bypass. At ambient temperatures of below 12.5°C the system has to be switched from parallel compression to flash gas bypass.
Overall, Javerschek concluded that parallel compression shifts the “CO2 equator” into warm regions. He explained that parallel compression is more efficient than a flash gas bypass system because the temperature lift of the flash gas is not further increased before it can be compressed. Instead it is taken in with a high density and high pressure level which means a smaller displacement is required to compress the flash gas.
According to Anders Juul, Segment Strategy Manager, Danfoss, parallel compression, can achieve 5-10% energy improvement in warm climates, and approximately 25% energy savings on installed capacity.
Echoing what was said by Javerschek, Katsunori Shibata, president of Shibata Welding Constructions Co., (SWC), and CEO of CAREL Japan Co., Ltd, confirmed that parallel compression offers higher CO2 system efficiencies at higher outside temperatures. When Carel compared the two different types of CO2 system, a booster with flash valve and a booster with parallel compression, in three different climates, Munich, Venice and Palermo, the CO2 booster systems with parallel compression was shown to reduce power consumption in each city by 4%, 7% and 10% respectively. What is more, compared to a hybrid CO2/R134a system, the CO2 system with parallel compression had almost the same power consumption, unlike the CO2 booster with flash valve.
Shibata also said that a parallel compressor with flash gas valve synchronisation significantly increases efficiency of CO2 transcritical refrigeration.
How will mechanical subcooling perform?
Another technology used to improve the efficiency of CO2 transcritical systems is mechanical subcooling. According to Ian Crookston Sobeys Manager, Energy Management, the retailer has two stores being used for a CO2 transcritical system benchmarking exercise, one of which uses mechanical subcooling. The power profile of the two stores, described below, will be used to verify energy savings:
·         Milton, Ontario: 5,800m2, with two racks and with reverse cycle defrost. Rack A has a cooling capacity of 42kW for low temperature and 111.5kW for medium temperature. Rack B has a cooling capacity of 52kW for low temperature and 127.5kW for medium temperature.
·         Stratford, Ontario: 5,000m2, with two racks and reverse cycle defrost. Rack A has a cooling capacity of 51kW for low temperature and 99kW for medium temperature. Rack B has a cooling capacity of 46kW for low temperature and 98kW for medium temperature. In addition the store has three separate low temperature suction groups per rack and mechanical subcooling, upstream of the gas/liquid receiver and upstream of the low temperature evaporators.


Data collection is currently underway, and first results will be presented at ATMOsphere America 2015, in Atlanta in June.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

Blog at WordPress.com.

Up ↑

%d bloggers like this: